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RESUMEN 

En este artículo extendemos el espectro de las lógicas con la Conversa de la 
Propiedad Ackermann. Definimos y axiomatizamos lógicas proposicionales intuicio-
nistas positivas, lógicas subintuicionistas y lógicas intuicionistas con la Conversa de 
la Propiedad Ackermann. Especialmente interesante es la versión de la negación in-
tuicionista propia de algunos de estos sistemas. Presentamos semánticas de tipo rela-
cional ternario para cada una de las lógicas que estudiamos en este trabajo. 
 
ABSTRACT 

The range of propositional logics with the Converse Ackermann Property is 
proved to be wider than currently assumed. Subintuitionistic, positive intuitionistic 
and intuitionistic propositional logics with the Converse Ackermann Property are de-
fined and axiomatized. A particular version of intuitionistic negation is involved in 
some of these systems. Complete ternary relational semantics are offered for all logics 
studied in the paper. 
 
 

I. INTRODUCTION 
 

Consider any propositional logic L with an implication connective → and 
a propositional falsity constant F. L has the Converse Ackermann Property 
(C.A.P.) if all formulas of the form (A → B) → C are unprovable whenever C 
contains neither → nor F. The property is named after the “Ackermann Prop-
erty”, which is prevalently considered to be a necessary property of any logic of 
entailment (L has the Ackermann Property if all the formulas of the form A → 
(B → C) are unprovable whenever A contains neither → nor F. 

The study of both Ackermann Property and its converse begins with 
Ackermann [1956 and 1958]. In Anderson & Belnap [1975, §8], Anderson, 
Belnap & Dunn [1992, §45] C.A.P. and A.P. are defined. Concerning the se-
mantical study of these properties, in Meyer & Routley [1972] “Ackermann 
grupoids” are firstly defined and used to algebraize a number of relevance lo-
gics. Further fruitful applications of these structures may be found in Dunn & 
Meyer, [1997], Restall [2000] and Kowalski & Ono [2001]. 
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Generally (and syntactically) speaking, logics with the C.A.P. are char-
acterized by the absence of assertion, i.e., 
 

A → ((A → B) → B)    (i) 
 
and contraction, i.e., 
 

(A → (A → B)) → (A → B)   (ii) 
 
though restricted versions of both theses can be present. 

Now, the C.A.P. is interesting from at least two different points of view: 
(1) If L is a logic with the C.A.P., non-necessitive propositions are not deriv-
able from necessitive ones (A is necessitive if A is of the form B) (see Ander-
son & Belnap [1975] and Restall [2000]). (2) Logics with the C.A.P. are the 
natural bridge between contractionless (see the foundational Ono & Komori 
[1985] or the overview Kowalski & Ono [2001]) and contraction logics. 

The problem concerning which systems do possess C.A.P. is first posed 
in Anderson & Belnap [1975, §8.12]. We summarize the current state of the 
art in the following results: (a) In Méndez [1987] a number of positive logics 
with the C.A.P. in the spectrum delimited by T-W and J (Ticket entailment 
without contraction and intuitionistic logic) are defined. (b) In Méndez 
[1988] these logics are endowed with a sort of semiclassical negation. 

(a)-(b) offer a partial solution to the problem, since (i) only relevance 
subintuitionistic logics are considered, and (ii) only subintuitionistic negation 
completions are identified as C.A.P. bearers. The aim of this paper is to over-
come these limitations by defining propositional intuitionistic logic with the 
C.A.P. 

Let us indicate which are the two main problems we face. First, once 
negation is introduced with the definition ¬A =def A → F (along the lines of 
Johannsson [1936]), standard intuitionistic theorems seem unavailable. For 
example, weak double negation becomes in this setting an instance of asser-
tion (A → ((A → F) → F)), but assertion is C.A.P. incompatible. Hence, we 
shall have to show how to impose additional constraints on F to define in-
tuitionistic negation. On the other hand, concerning semantics, both Acker-
mann grupoids and standard ternary frames (see Dunn & Meyer [1997] for an 
illustrative presentation) should be modified, being intuitionistic logic non-
relevant. Our approach adopts properly modified ternary frames. Remarka-
bly, the definition of validity is altered: the set of designated worlds (points, 
states) is deleted and validity is defined through the set of all possible worlds 
(points, states).  

The structure of the paper is as follows. In §§2,3 we define positive in-
tuitionistic logic without contraction and assertion. In §§4,5 we extend this 
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system to define positive intuitionistic logic with the C.A.P. In §§6,7,8 in-
tuitionistic negation is added, C.A.P. and semantic consistency are proved. 
Finally, in §9 we prove completeness. When needed, we shall recall results 
from Méndez [1987] and Méndez [1988], where the semantics used are dif-
ferent to the models here presented.  
 
 

II. POSITIVE INTUITIONISTIC LOGIC WITHOUT CONTRACTION AND  
ASSERTION: I+–CA 

 
The positive language consists of a denumerable set of propositional 

variables and the binary connectives →, ∧ and ∨ (A, B, C, etc are metalin-
guistic variables). I+–CA can be axiomatized with axioms: 
 

A1. A → (B → A) 
A2. (B → C) → ((A → B) → (A → C)) 
A3. (A → B) → ((B → C) → (A → C)) 
A4. (A ∧ B) → A    (A ∧ B) → B 
A5. ((A → B) ∧ (A → C)) → (A → (B ∧ C)) 
A6. A → (A ∨ B)    B → (A ∨ B) 
A7. ((A → C) ∧ (B → C)) → ((A ∨ B) → C) 
A8. (A ∧ (B ∨ C)) → ((A ∧ B) ∨ C) 

 
Rules: Modus Ponens [If ⊢A and ⊢A → B, then ⊢B] and Adjunction [if ⊢A 
and ⊢B, then ⊢A∧B]. 
 
 

III. SEMANTICS FOR I+–CA 
 

Given a pair <K,R> where K is a non-empty set and R a ternary relation 
on K, let us define the binary relation ≤ and the quaternary relation R2 by, for 
every a,b,c,d∈K. 

 
d1) a ≤ b iff (∃x∈K)Rxab 
d2) R2abcd iff (∃x∈K)(Rabx and Rxcd) 

 
An I+–CA model is a triple <K,R,⊨> where K is a non-empty set, R is a 

ternary relation on K satisfying the following conditions for every a,b,c,d∈K, 
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P1.  a ≤ a 
P2.  a ≤ b and Rbcd ⇒ Racd 
P3.  R2abcd ⇒ (∃x∈K)(Rbcx and Raxd) 
P4.  R2abcd ⇒ (∃x∈K)(Racx and Rbxd) 
P5.  Rabc ⇒ a ≤ c 

 
Finally, ⊨ is a valuation relation from K to the sentences of I+–CA satis-

fying the following conditions for all formulas p, A, B and point a∈K: 

i) a ⊨ p and a ≤ b ⇒ b ⊨ p 
ii) a ⊨ A ∨ B  iff a ⊨ A  or a ⊨ B 
iii) a ⊨ A ∧ B  iff a ⊨ A  and  a ⊨ B 
iv) a ⊨ A → B  iff for all b,c∈K, (Rabc and b ⊨ A) ⇒ c ⊨ B 

A is valid in I+–CA iff a ö A for all a∈K in all models. It is easy to prove 
similarly as in Méndez and Salto [2000] that a formula A is I+–CA valid iff A 
is a theorem of I+–CA. 
 
 

IV. POSITIVE INTUITIONISTIC LOGIC WITH THE C.A.P.: I+º 
 

I+º is axiomatized adding to I+–CA axioms: 
 

A9. A → ((A → (B → C)) → (B → C)) 
A10. (A → (A → (B → C))) → (A → (B → C)) 

 
REMARK 1. A2 (or A3) is not independent. 

 
REMARK 2. Call any formula A implicative iff A is of the form B → C. A9 
and A10 are (i) and (ii) of Introduction restricted to the case in which B 
is an implicative formula. 

 
 

V. SEMANTICS FOR I+º 
 

Models for I+º are defined similarly to I+–CA models but with the addi-
tion of the following postulates: 
 

P6.  R2abcd ⇒ R2bacd 
P7.  R2abcd ⇒ R3abbcd 

 
where R3 is defined by  
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R3abcde =def ∃x∃y(Rabx and Rxcy and Ryde) 
 

We call P1-P7 the canonical postulates. We may note that P3 (or P4) is 
redundant in this setting. 

It is easy to prove along the lines of Méndez [1987] that a formula A is 
I+

0-valid iff A is a I+
0-theorem. 

 
 

VI. ADDING INTUITIONISTIC NEGATION: THE LOGIC Iº 
 

We add to the sentential language upon which the positive logics are 
based the propositional falsity constant F and we define ¬A =def A → F. Then, 
the logic Iº (propositional intuitionistic logic with the C.A.P.) is defined by 
supplementing I+º with the axioms: 
 

A11. A → ((A → F) → F), i.e., A → ¬¬A 
A12. (A → (A → F)) → (A → F), i.e., (A → ¬A) → ¬A 
A13. F → (A → B) 

 
Remarkably, if the standard intuitionistic negation axiom F → A were 

introduced instead of A13, then the resulting system would not have the 
C.A.P. However, the following are theorems of Iº: 
 

T1. F → ¬A 
T2. (A → ¬B) → (B → ¬A) 
T3. (A → B) → (¬B → ¬A)  
T4. (Α → Β) → ((A → ¬B) → ¬A) 
T5. (A → ¬B) → ((A → B) → ¬A) 
T6. A → (¬A → ¬B) 
T7. ¬A → (A → ¬B) 
T8. (A ∧ ¬A) → ¬B 
Τ9.  ¬(A ∧ ¬A) 
T10. ¬(A ∨ B) ↔ (¬A ∧ ¬B) 
T11. (¬A ∨ ¬B) → ¬(A ∧ B) 
T12. (A ∨ B) → ¬(¬A ∧ ¬B) 
T13. (A ∧ B) → ¬(¬A ∨ ¬B) 
T14. (A ∨ ¬B) → (¬A → ¬B) 
T15. (A ∧ B) → ¬(A → ¬B) 
T16. (A → B) → ¬(A ∧ ¬B) 
T17. ((A ∨ ¬B) ∧ ¬A) → ¬B 
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VII. CONVERSE ACKERMANN PROPERTY 
 

Consider the following set of matrices where F is asigned the value 0 
and 2 is the only designated value 
 

→ 0 1 2 
0 2 0 2 
1 2 2 2 
2 0 0 2  

∧ 0 1 2 
0 0 1 0 
1 1 1 1 
2 0 1 2  

∨ 0 1 2 
0 0 0 2 
1 0 1 2 
2 2 2 2  

 
This set verifies Iº but falsifies (A → (A → B)) → (A → B) only when v(A) = 0, 
v(B) = 1 and A → ((A → B) → B) only when v(A) = 2, v(B) = 1. We show that Iº 
has the C.A.P. Let (A → B) → C a wff in which C contains nor → neither F. 
Assign all variables in C the value 1. Then v((A → B) → C)) = 0. 

Note that A11 and A12 are, of course, not independent in logics with 
assertion and contraction. However, they are not derivable from Iº+ and A13: 
assign F the value 1. 
 
 

VIII. SEMANTICS FOR Iº 
 

A Iº model is a quadruple 〈K,S,R,⊨〉 where S is a non-empty subset of K 
and 〈K,R,⊨〉 is an I+º model such that the conditions below are satisfied: 

P8.  (Rabc and c∈S) ⇒ ∃x(x∈S and Rbax) 
P9.  (Rabc and c∈S) ⇒ ∃x∃y(Rabx and Rxby and y∈S) 
P10. aŁS ⇒ (not-Rabc or c ⊨ A) (for any wff A). 

 
and the relation ⊨ satisfies in addition the following clause 
 

v) a ⊨ F  iff  a∉S 
 

A formula A is Iº-valid iff a ⊨ A for all a∈K in all models. 
We sketch a proof of semantic consistency (semantic soundness of Iº 

relative to the semantics of Iº models). First we prove 
 

LEMMA 8.1. If a ≤ b and a ⊨ A, then b ⊨ A. 
Proof. By induction on the length of A, using P2 in the case of the con-

ditional.  
 

LEMMA 8.2. ⊨IºA → B  i ff for all a∈K in all models, a ⊨ A ⇒ a ⊨ B. 
Proof. P1, d1 and Lemma 8.1. 
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Now, we can prove:  
 
THEOREM 8.1. (Semantic consistency of Iº (soundness of Iº)) If  ⊢IºA, 

then ⊨IºA. 
Proof. Since all theorems are conditional formulas, we can use Lemma 

8.2. to immediately render A4-A8 and the rules. A1, A2, A3, A9 and A10 are 
proved using, respectively, P5, P3, P4, P6 and P7 (see Méndez (1987)). Finally, 
A11, A12 and A13 use, respectively, P8, P9 and P10. We illustrate the proce-
dure by proving the validity of A12. Suppose arguing by reductio ad absurdum 
that a ⊨ A → (A → F) and a ⊭ A → F for some a∈K in some model (Lemma 
8.2). By definitions, there are b,c∈K such that Rabc, b ö A and c ⊭ F. As c∈S 
(clause (v)), Rabx and Rxby for some x∈K, y∈S (P9). Hence, x ⊨ A → F (since 
Rabx, a ö A → (A → F) and b ⊨ A) and finally y ⊨ F (because Rxby, x ⊨ A 
→ F and b ⊨ A) which is impossible, y being a member of S. 
 
 

IX. COMPLETENESS OF Iº 
 

We begin by recalling some definitions. A set of formulas a is a theory 
if it is closed under Adjunction and also has the property that if A∈a and 
A→B is a provable formula then, B∈a. Let KT be the set of all theories, and 
RT the ternary relation on KT defined as follows: for every a,b,c∈KT, RTabc iff 
for all formulas A, B such that A → B∈a and A∈b, it holds that B∈c. A theory 
b is prime just in case A∈b or B∈b whenever A ∨ B∈b, and consistent iff no 
negation of a theorem does not belong to b. A theory is regular iff contains 
all Iº theorems and null iff no formula belongs to it. Now, let KC be the set of 
all prime non-null theories and SC the set of all consistent theories, and RC the 
restriction of RT to KC. Further, let ⊨C be defined for any wff A and a∈KC as 
follows: a ⊨C A iff A∈a. Then, the quadruple <KC,SC,RC,⊨C> is called the Iº 
canonical model.  

Iº completeness will follow from the facts contained in the next series 
of lemmas. The first one states the equivalence between regular and non-null 
theories, as proved using A1: 

 
LEMMA 9.1. If b is any non null theory, then b is regular 
 
The following proposition shows that for each non-null theory lacking a 

formula there is a non-null prime theory extending it which lacks the same 
formula: 
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LEMMA 9.2. Let A be a wff, b a non-null element in KT and A∉b. Then, 
A∉x for some x∈KC such that b ⊆ x. 

Proof. By Zorn’s Lemma there is a maximal theory x without A includ-
ing b. If x is not prime, then for some wffs B,C, B ∨ C∈x, B∉x, C∉x. Put [B,x] 
= {E: ∃D(D∈x and ðIº (B ∧ D) → E}. Define [C,x] similarly. Clearly both [B,x] 
and [C,x] are non-null theories strictly including x. Since x is maximal, 
A∈[B,x] and A∈[C,x], which implies A∈x, and this is impossible. 

 
LEMMA 9.3. Let a,b,c∈KT such that a is non-null, c is prime and RTabc. 

Then there is x∈KC such that a ⊆ x and RTxbc. 
Proof. By Zorn’s Lemma there is a maximal theory x including a such 

that RTxbc. Suppose x is not prime and define [A,x] and [B,x] as in Lemma 
9.2 for formulas A, B such that A∨B∈x but A∉x, B∉x. Since both [A,x] and 
[B,x] are theories strictly including x, we have not-RT[A,x]bc and not-
RT[B,x]bc. But then it is easily shown that c is not prime, which is impossible. 

 
LEMMA 9.4. Let a,b,c∈KT such that b is non-null, c is prime and RTabc. 

Then there is x∈KC such that b ⊆ x and RTaxc. 
Proof. Similar to that of Lemma 9.3. 
 
LEMMA 9.5. Let a,b non-null theories. The set x = {B: ∃A(A → B∈a and 

A∈b)} is a non-null theory such that RTabx. 
Proof. It is easy to prove that x is closed under Adjunction and provable 

entailment. Obviously, RTabx. Next, let ⊢IºA and B∈b. By A1, ⊢ B → A so a 
fortiori, B → A∈a (Lemma 9.1). Therefore, A∈x, i.e., x is regular. 

 
The following lemma shows that the relation .C of the canonical model 

is the set inclusion relation. 
 
LEMMA 9.6. a ≤C b iff a ⊆ b 
Proof. Suppose a ≤C b. By d1, RCxab for some x∈KC. As A → A∈x 

(Lemma 9.1), if A∈a, then A∈b, i.e., a ⊆ b. Suppose now a ⊆ b. Since a∈KT, 
clearly RTIºaa. Hence, RTIºab. By Lemma 9.3, there is some x∈KC such that 
RCxab, which, by d1, just is a ≤C b as required. 

 
It is easy to prove the following fact using A11: 
LEMMA 9.7. F∈a iff a is inconsistent 
 
LEMMA 9.8. The canonical ⊨C is a valuation relation satisfying condi-

tions (i)-(v) [§2, §7] 
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Proof. (i) is trivial by Lemma 9.6, (ii) and (iii) are immediate given Iº 
and properties of members of KC, (v) follows from Lemma 9.7 and (iv) 
from right to left is obvious. So, we prove (iv) from left to right. Assume a 
⊭C A → B. We show that there are x,y∈KC such that RCaxy, x ⊨C A and y ⊭C 

B. Define b = {C: ⊢Iº A → C}. It is simple to verify that b is a non-null theory 
such that A∈b (⊢Iº A → A). Define now (Lemma 9.5) the non-null theory c = 
{C: ∃D(D → C∈a and D∈b)} such that RTabc. Further, we show B∉c. Sup-
pose arguing by reductio ad absurdum that B∈c. Then there is a formula 
C∈b such that C → B∈a. Therefore, ⊢Iº A → C and, so,             A → B∈a, 
i.e., a ⊨C A → B, contradicting the hypothesis. Now Lemma 8.2 applies, and 
there is some y∈KC such that c ⊆ y and B∉y. By definitions, RTaby. Hence, 
Lemma 9.4 grants there is some x∈KC such that b ⊆ x and RCaxy with A∈x 
(A∈b). 

 
LEMMA 9.9. The canonical postulates hold in the Iº canonical model. 
Proof. P1 holds by Lemma 9.6; P2 by definition of RC and Lemma 9.6; 

P3, P4, P5, P6 and P7 follow from, respectively, A2, A3, A1, A9 and A10 us-
ing lemmas 9.2-9.6. We exemplify the proof concerning the validity of P4. 
We show: 

 
PROPOSITION: Let a,b,c be non-null elements in KT and d∈KC. More-

over, assume RT2abcd. Then, there is some xłKC such that RTacx and RTbxd. 
Proof. Suppose RT2abcd, that is, RTabx and RTxcd for some non-null 

element x in KT (Lemma 9.5). We have to prove that there is some x∈KC such 
that RTacx and RTbxd. Define (Lemma 9.5) the non-null theory                        
z = {B: ∃A(A → B∈a and A∈c)} with RTacz. Deduce now RTbzd using A3. By 
Lemma 9.4, RTbxd with z ⊆ x and x∈KC. By RTacz and definitions, RTacx. 

 
The canonical postulate P4, i.e., RC2abcd ⇒ ∃x(RCacx and RCbxd) im-

mediately follows. 
 
Finally, the validity of P8, P9 and P10 hold by respectively the three 

lemmas that follow.  
 
LEMMA 9.10. Let a,b,c be non-null members of KT, c a consistent ele-

ment in KT and RTabc. Then, there is some x in SC such that c⊆x and RTbax. 
Proof. Define (cfr. Lemma 9.5) the non-null theory y = {B: ∃A(A → B∈b 

and A∈a)}. Thus: RTbay. We prove y is consistent. Suppose it is not. Then, 
F∈y (Lemma 9.7). By definition of y, let A∈a such that  A → B∈b. By A11, 
(A → F) → F∈a. Given that RTabc, F∈c, contradicting the hypothesis. Then, 
apply Lemma 9.2. 
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LEMMA 9.11. Given non-null a,b∈KT, c a consistent theory and RTabc, 
then there is some x∈KC and y∈SC such that RTabx and RTxby. 

Proof. Suppose RTabc, a,b,c non-null theories and c being consistent. 
Define the non-null theories 
 

u = {B: ∃A(A → B∈a and A∈b)} 
w = {B: ∃A(A → B∈u and A∈b)} 

 
thus: RTabu and RTubw. We prove first w consistent. Suppose it is not. Then, 
F∈w (Lemma 9.7). By definition of w, B → F∈u (B∈b). By definition of u,  
A → (B → F)∈a (A∈b). As (A → (B → F)) → ((A ∧ B) →F) is a Iº theorem,    
(A ∧ B) → F∈a. But since A ∧ B∈b (A,B∈b) and RTabc, F∈c, which is impos-
sible c being consistent. 

Therefore, we have u,w∈KT (with w consistent). Hence, Lemma 9.2. 
applies and in consequence there is some y in SC such that w ⊆ y and RTuby. 
Now, by Lemma 9.3 there is some x in KC such that u ⊆ x and RTxby. As 
RTabu (and u ⊆ x), RTabx as required. 

 
LEMMA 9.12. Let a be an inconsistent theory. Then, for any non-null 

theory b and prime c in KT, not-RTabc or B∈c, for any wff B. 
Proof. Suppose F∈a (Lemma 9.7), Rabc, A∈b and B any wff. By A13, 

A → B∈a, hence B∈c. That is, if a is inconsistent, for any non-null theory b 
and prime theory c either Rabc does not obtain or else c is degenerate (a the-
ory is degenerate iff any wff belongs to it). 

 
Now, canonical postulates P8, P9 and P10, i.e., 
 
(RCabc and c∈SC) ⇒ ∃x(x∈SC, c⊆x and RCbax) 
(RCabc and c∈SC) ⇒ ∃x∃y(y∈SC, RCabx and RCxby) 
 

and 
 

a∈SC ⇒ ∀x∀y(not-RCaxy or y is degenerate) 
 
are immediate from, respectively, lemmas 9.10, 9.11 and 9.12. 

Three last lemmas before the completeness theorem: 
 
LEMMA 9.13. If ⊬IºA, then there is some x∈KC such that A∉x. 
Proof. Iº is the minimal regular theory such that A∉Iº. Then, use 

Lemma 9.2. 
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LEMMA 9.14. SC is non-empty 
Proof. As ⊭IºF, we have, by Theorem 8.1, ⊬IºF. Then apply Lemma 9.13. 

 
LEMMA 9.15. The Iº canonical model is indeed a Iº model. 
Proof. By Lemma 9.14., SC is non-empty. Lemmas 9.10-9.12 show that 

the canonical postulates P.8, P9 and P.10 hold in the canonical model. Thus, 
by Lemma 9.9 we have that the Iº canonical model is an Iº model. 

 
Finally, Lemmas 9.13. and 9.15. prove: 
 
THEOREM 9.1. (Completeness of Iº) If ⊨IºA, then ⊢IºA 
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