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RESUMEN 

Una lógica S tiene la Conversa de la Propiedad Ackermann (CAP) si no es 
posible derivar en S proposiciones necesitivas a partir de proposiciones no necesitivas. 
Mostramos en este artículo cómo introducir la negación mínima en las lógicas 
positivas con la CAP. Definimos semánticas relacionales ternarias para todas las 
lógicas consideradas. 

 
ABSTRACT 

A logic S has the Converse Ackermann Property (CAP) if  non-necessitive 
propositions are not derivable in S from necessitive ones. We show in this paper how 
to introduce minimal negation in positive logics with the CAP. Relational ternary 
semantics are provided for all the logics considered in this paper. 
 
 

I. INTRODUCTION 
 

A positive logic with a truth constant t and a falsity constant F has the 
Converse Ackermann Property (CAP) if all the formulas of the form 
(A→B)→C are unprovable whenever C does not contain → or t or F. The 
CAP can intuitively be interpreted as the non-derivability of necessitive 
propositions from non-necessitive ones (a formula A is necessitive if A is 
equivalent to one of the form �B and �B, in its turn, is defined as (B→B)→B 
in logics in which � is not primitive (see Anderson and Belnap [1975 §4.3]). 

The question about which systems do posses the CAP is first posed in 
Anderson & Belnap [1975, §8.12.], and in Méndez [1987] it is answered for 
implicative and for positive logics. Syntactically speaking, the solution 
roughly consists in restricting Contraction 

(A→(A→B))→(A →B) 

and Assertion 

A→((A→B)→B) 

to the case in which B is an implicative formula (A is implicative iff A is of the 
form B→C). Thus, logics with the CAP are contractionless logics. Actually, 
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they are the natural bridge between strict contractionless logics and logics 
with contraction. 

On the other hand, and turning to minimal negation, it is known that 
this form of introducing negation arose in the context of intuitionistic logic 
(see Johansson [1936], Kolmogorov [1967]). The idea was to add a 
propositional falsity constant F to what we will now name the positive 
fragment of intuitionistic logic. Next, since no specific axiom on F is added, 
the definition  

¬A=df A→F 

is introduced. Then, it is clear that the positive logic itself provides the set of 
negation theorems. The resulting logic, minimal intuitionistic logic, can 
consequently be viewed as a definitional extension of positive intuitionistic 
logic. 

But, what about negation in logics with the CAP? That is, which kind(s) 
of negation(s) is (are) compatible with the CAP? We briefly note the results 
we are aware of. In Méndez [1988] a sort of semiclassical negation, in 
Kamide [2002] a so-called “strong negation” is added to the positive logics of 
Méndez [1987]. Now, the aim of this paper is to define minimal negation (in 
the sense discussed above) within these systems. That is to say, we shall 
definitionally extend the positive logics of Méndez [1987] with F and study 
the resulting minimal negation in each one of them. 

The structure of the paper is as follows. In §II, III, the positive logics of 
Méndez [1987] are summarily  recalled. In §IV, F is added and the resulting 
logics are syntactically studied. In §V, we present the semantics, and in §VI, 
we prove the completeness theorem. In §VII, the truth constant t is introduced 
and semantic consistency and completeness are proved for the new logics. In 
§VIII, the relationship between t and F is studied. Finally, in §IX, a set of 
matrices is presented. This set grounds some claims made throughout the 
paper. 
 
 

II. POSITIVE LOGICS WITH THE CAP 
 

The sentential language has the binary connectives →, ∧, ∨ as 
primitive. The biconditional (↔) is introduced by definition in the customary 
way. The logics we are here concerned with are defined from the following 
set of axiom schemes and rules of inference: 

A1. A→A 
A2. (B→C)→((A→B)→(A→C)) 
A3. (A→B)→((B→C)→(A→C)) 
A4. (A→(A→(B→C)))→(A→(B→C)) 
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A5. A→((A→(B→C))→(B→C)) 
A6. A→(A→A) 
A7. A→ (B→A) 
A8. (A∧B) →A (A∧B)→B 
A9. ((A→B)∧(A→C))→(A→(B∧C)) 
A10. A→(A∨B) B→(A∨B) 
A11. ((A→C)∧(B →C))→((A∨B)→C) 
A12. (A∧(B∨C))→((A∧B)∨(A∧C)) 

Rules: Adjunction (Adj.) (if  ðA and ðB, then ðA∧B), Modus Ponens (MP) (if 
ðA→B and ðA, then ðB], CAP Assertion (CAP as.) (if ðA, then ð(A→ 
(B→C))→(B→C)), and the rule K (K) (if ðA, then ðB→A). 

The logics are defined as follows. The logic To
+ (positive Ticket 

entailment –– cfr. Anderson & Belnap [1975] –– with the CAP) is formulated 
with A1–A4, A8–A12, Adj. and MP. Other logics are defined as follows: 

Eo
+: To

+ plus CAP. As. 
Ro

+: To
+ plus A5. 

RMOo
+ Ro

+ plus A6. 
S4o

+: Eo
+ plus K 

Io
+: To

+ plus A7  

If in all foregoing formulations we change (whenever present) A4, CAP 
as. and A5 for, respectively, Contraction 

A4’. (A→(A→B))→(A→B) 

the Assertion rule (as.r) 

as.r:  if ðA, then ð(A→B)→B 

and Assertion 

A5’. A→((A→B)→B) 

we get the formulations of the following positive logics, respectively: Ticket 
entailment, T+, Entailment, E+, Relevance logic, R+, Relevance logic plus the 
mingle axiom, RMO+, modal logic S4, S4+, and intuitionistic logic, I+. So, To

+, 
Eo

+, Ro
+, RMOo

+, S4o
+ and Io

+ are the restrictions with the CAP of the 
previously mentioned logics (see Anderson & Belnap [1975], Méndez [1987]). 

The deductive relations these logics maintain with each other ( which are 
exactly those maintained by their unrestricted counterparts) are summarized in 
the following diagram where the arrow stands for set inclusion: 
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Io
+ 

RMOo
+          S4o

+ 

                                                  Ro
+ 

     
    Eo

+ 
      

         To
+ 

 

 
III. SEMANTICS FOR POSITIVE LOGICS 

 
Given a triple 〈K, O, R〉 where K is a non-empty set, O⊆K and R a 

ternary relation on K, let us define the binary relation ≤, the quaternary 
relation R2 and the five element relation R3 by: for every a ,b ,c , d, e ∈ K: 

d1.  a ≤ b=df (∃x∈O) Rxab 
d2.  R2abcd=df (∃x∈K) (Rabx and Rxcd) 
d3.  R3abcde=df (∃x∃y∈K) (Rabx and Rxcy and Ryde) 

A To
+ model is a quadruple 〈K, O, R, ö〉 where K is a non-empty set, 

O⊆K and R is a ternary relation on K satisfying the following conditions for 
every a ,b ,c , d ∈ K 

P1. a≤a 
P2. (a≤b and Rbcd) ⇒ Racd 
P3. R2abcd ⇒ (∃x∈K) (Rbcx and Raxd) 
P4. R2abcd ⇒ (∃x∈K) (Racx and Rbxd) 
P5. R2abcd ⇒ R3abbcd 

Finally, ö is a evaluation relation from K to the sentences of the positive 
language satisfying the following conditions for each propositional variable 
p, any wff A, B and points a, b in K: 

(i) (aö p and a≤b) ⇒ böp 
(ii) aöA∧B iff aöA and aöB 
(iii) aöA∨B iff aöA or aöB 
(iv) aö A→B iff for all b,c∈K, (Rabc and böA) ⇒ cöB 

A is valid ( öT
o

+A) iff aöA for all a∈O in all models. 
Semantic for the remaining logics are defined from the following set of 

postulates: 
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P6. Rabc ⇒ (∃x∈O) R2axbc 
P7. R2abcd ⇒ R2bacd 
P8. Rabc ⇒ a≤c or b≤c 
P9. (∃x∈O) x≤a 
P10. Rabc ⇒ a≤c 

In particular, we have (in correspondence to the axiomatic systems in 
§II): Eo

+ models, Ro
+ models, RMOo

+ models, S4o
+ models and Io

+ models are 
the same as To

+ models but with the addition of the postulates P6, P7, P8, P9 
and P10, respectively. Validity is similarly defined as in To

+. 
These logics (and the accompanying semantics) are those defined in 

Méndez [1987] but only with this difference: we momentarily dispense with 
the truth constant t of Méndez [1987] (which is introduced in §VII below). It 
is then easy to prove, along the the lines of Méndez [1987], that A is valid iff 
A is a theorem for each one of these logics. 
 
 

IV. THE LOGICS TO
+,F, EO

+.F, RO
+,F, RMOO

+,F, S4O
+,F, IO

+,F 
 

The logics To
+,F, Eo

+,.F, Ro
+,F, RMOo

+,F, S4o
+,F, and Io

+,F are expansions 
with the propositional constant F of To

+, Eo
+, Ro

+, RMOo
+, S4o

+, and Io
+, 

respectively. We add to the sentential language of §II the propositional falsity 
constant F together with the  
 

DEFINITION : ¬A=dfA→F 
 

We begin by noting some characteristic theorems of the unrestricted 
positive logics (see, e.g., Anderson and Belnap [1975]): 

(i) (A→(A→C))→(A→C) 
(ii) (A→(B→C))→((A→B)→(A→C)) 
(iii) (A→B)→((A →(B→C))→(A→C)) 
(iv) (A→(B→C))→((A∧B)→C) 
(v) (A→B)→((A→B)→C)→C) 
(vi) (A→((B→D)→C))→((B→D)→(A→C)) 
(vii) (B→D)→((A→((B→D)→C))→(A→C))) 
(viii) A→((A→C)→C) 
(ix) (A→(B→C))→(B→ (A→C)) 
(x) B→((A→(B→C))→(A→C)) 

Now, (i)-(iv) are theorems of T+, (i)-(vii) of E+, and (i)-(x), of R+. It is 
easy to show that (i)-(x) are theorems of the respective logics with the CAP 
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when C is restricted to an implicative formula (see Robles and Méndez 
[2002]). Therefore, they are also theorems of the corresponding definitionally 
extended logics when C is a negative formula (that is, an implicative formula 
of the form A→F). Therefore, we have: 

T1. (A→(A→¬B))→(A→¬B) 
T2. (A→(B→¬C))→((A→B)→(A→¬C)) 
T3. (A→B)→((A→(B→¬C))→(A→¬C)) 
T4. (A→(B→¬C))→((A∧B)→¬C) 
T5. (A→B)→(((A→B)→¬C)→¬C) 
T6. (A→((B→C)→¬D))→((B →C)→(A→¬D)) 
T7. (B→C)→((A→((B→C)→¬D))→(A→¬D)) 
T8. A→((A→¬C)→¬C) 
T9. (A→(B→¬C))→(B→(A→¬C)) 
T10. B→((A→(B→¬C))→(A→¬C)) 

Where T1-T4 are theorems of To
+,F, T1-T7, of Eo

+,F and T1-T10, of 
Ro

+,F. On the other hand, we shall employ the following additional theorems: 

(xi) (A→B)→(A→(A→ B)) 
(xii) (A→B)→(B→(A→B)) 
(xiii) B→(A→A) 
(xiv) (A→B)→(C→(A→B)) 
(xv) ((A→B)→(A→C))→(B→(A→B)) 
(xvi) ((A∧B)→C)→(A →(B→C))  

where (xi) and (xii) are theorems of RMOo
+ (see Salto, Robles and Méndez 

[1999]), (xiii) and (xiv) are provable in S4+ (and S4o
+) and, finally, (xv) and 

(xvi) are derivable in I+ (Io
+). 

Now, in addition to T1-T10, we have the following theorems ( a sketch 
of the proof is provided at the right of each theorem): 

T11. ¬F       A1 
T12. ¬B→((A→B)→¬A)    A2 
T13. (A→B)→(¬B→¬A)    A3 
T14. (¬A∧¬B)→¬(A∨B)    A11, A10, T13 
T15. (¬A∨¬B)→¬(A∧B)    A8, T13 
T16. F→¬F     A6 
T17. ¬A→(A→¬A)     (xi) 
T18. ¬A→(F→¬A)     (xii) 
T19. A→¬F     (xiii) 
T20. ¬A→(B→¬A)     (xiv) 
T21. F→¬A     A7 
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T22. ¬A→(A→¬B)     T21 
T23. A→(¬A→¬B)      A2, A7 
T24. (¬A∨¬B)→(A→¬B)    A7, T22 
T25. (A∨¬B)→(¬A→¬B)    A7, T23 
T26. (A→(B→¬C))↔((A∧B)→¬C)   (iv), (xvi) 
T27. (A→(B→¬C))↔((A→B)→(A→¬C))  T2, (xv) 
T28. (A∧¬A)→¬B     T23, T27 
T29. ((A∨¬B)∧¬A)→¬B    T25, T27 

T11-T15 are theorems of To
+,F, T11-T18 are theorems of RMOo

+,F, T11-
T20 are theorems of S4o

+,F, and finally, T11- T29 are Io
+,F theorems (this can 

readily be seen by inspection of the theorems used in the proofs above). 
We note that even special reductio 

(xvii) (A→¬A)→¬A 

i.e. 

(xviii) (A →(A→F))→(A→F) 

is unprovable. We also remark that although we have some forms of weak 
contraposition as T12 and T13, still we do not have 

(xix) (A→¬B)→(B→¬A) 

i.e. 

(xx) (A→(B→F))→(B→(A→F)) 

nor 

(xxi) A→¬¬A 

i.e. 

(xxii) A→((A→F)→F) 

Finally, we note that, interestingly, the characteristic intuitionistic CAP 
axiom (see Robles, Méndez, Salto & Méndez R. [2003]) 

(xxiii) F→(A→B) 

is not provable. 
All these facts follow from the set of matrices in  §IX. 
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V. SEMANTICS 
 

We provide semantics for the logics defined in the previous section. 
A To

+,F model is a quintuple 〈K, O, S, R ,ö〉 where 〈K, O, R, ö〉 is a To
+ 

model and S a subset of K such that S∩O≠∅. The following clauses are also 
added: 

(v) (a≤b & aöF) ⇒ böF 
(vi) aöF iff a∉S 

öT
o

+,FA (A is To
+,F valid) iff aöA for all a∈O in all models. 

We note that F is not valid: let a∈S∩O. Then, aûF. But a∈O. So, 
ûT

o
+,FA. 

Eo
+,F models, Ro

+,F  models etc. are similarly defined with respect to Eo
+ 

models, Ro
+ models etc. From now on, let us refer by So

+ to any of the 
positive logics To

+, Eo
+, Ro

+, RMOo
+, S4o

+ or Io
+. And let So

+,F be any of the 
corresponding definitionally extended logics defined in  §IV. We have: 
 

THEOREM V.1 (Semantic consistency of So
+,F). If  ðS

o
+,F A, then öS

o
+,F  A. 

Proof. Immediate given the semantic consistency of So
+. 

 
 

VI. COMPLETENESS 
 

We sketch a proof of the completeness of So
+,F. The proof is essentially 

Henkin style in character. That is, we show that for each non-theorem there is 
a canonical point that does not contain it in the canonical model. 
 
VI.1.Definition of the canonical model for To

+,F, Eo
+,F, Ro

+,F, and RMOo
+,F 

The To
+,F canonical model is the structure 〈KC, OC, RC, SC, öC〉 where: 

• KC is the set of all prime theories  
• OC is the set of all prime regular theories 
• RC is defined by: RCabc iff (A→B∈a and A∈b) ⇒ B∈c 
• SC is the set of all prime consistent theories 
• öC is defined by: aöCA iff A∈a 

a is closed under adjunction: if A∈a and B∈a, then A∧B∈a. 
a is closed under provable entailment: if ðT

o
+,FA→B and A∈a, then 

B∈a. 
a is a theory: a is closed under adjunction and provable entailment. 
a is prime: if A∨B∈a, then A∈a or B∈a. 
a is regular: if ðT

o
+,FA, then A∈a. 
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a is consistent: F∉a. 
a is non-null: a contains at least one formula. 
Now, the Eo

+,F, Ro
+,F and RMOo

+,F canonical model are defined 
similarly (just change the definition of regular theory according to the notion 
of theorem in the respective logic). 
 
VI.2 Definition of the canonical model for S4o

+,F and Io
+,F. 

The S4o
+,F canonical model is the structure 〈KC, OC, RC , SC, öC〉 where 

RC and öC are defined exactly as in §VI.1 and KC, OC and SC  are as in §VI.1 
but with this only difference: the theories in these items are now non-null1. 
The Io

+,F canonical model is defined similarly . 
 
VI.3. Preliminary lemmas 

We shall employ the following lemmas: 
 

LEMMA VI.1 If x is a theory such that A∉x, there is some y∈KC such 
that x⊆y and A∉y. 
 

LEMMA VI.2 a ≤Cb iff a⊆b. 
 

Proof of this lemmas can be found in, e.g., Robles, Méndez, Salto & 
Méndez R. [2003]. 
 

THEOREM VI.1 The canonical model is in fact a model 
 

In the completeness proof of So
+ it is shown that the positive canonical 

model 〈KC, RC, OC, öC〉 is indeed a model. Therefore, in order to prove that 
the same holds for the canonical So

+,F model, we only have to prove 

(a)  SC∩OC̃∅ 

and 

(b) If canonically read, clauses (v)-(vi) hold. 

Proof of (a) SC∩OC̃∅: As ûS
o
+,F F (see §4), by Theorem V.1 úS

o
+,FF, 

i.e., F∉So
+,F. Since So

+,F is a theory, Lemma VI.1 applies and there is some 
x∈KC such that So

+,F⊆x and F∉x. Thus, x is consistent (x∈SC) and x∈OC. 
 

Proof of (b) Canonical clauses (v)-(vi) hold: By Lemma VI.2 clauses 
(v) and (vi) are 

(v)  (a⊆ b and F∈a) ⇒ F∈b 
(vi) F∈a iff a∉SC 
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which obviously hold. 
 

We now prove 
 

THEOREM VI.2 (Completeness of So
+,F)  If öS

o
+,FA, then ðS

o
+,FA. 

Proof. Suppose úS
o

+,FA, i.e., A∉So
+,F. Given that So

+,F is a theory, there is 
some x∈KC such that So

+,F⊆x and A∉x. But x is regular. So, x∈OC. As the 
canonical model is a model, xûCA. Therefore, ûS

o
+,FA (A is not valid). 

 
 

VII. THE TRUTH CONSTANT t 
 

Consider the propositional language of §II extended with the falsity 
constant F. Now, we add to this language the truth constant t and to So

+,F the 
axiom 

A13. t 

and the rule necessitation (nec.) 

ðA ⇒ ðt→A 

We note that 

(t→(B→C))→(B→C) 

and 

A→t 

could now replace CAP assertion and the K rule to axiomatize Eo
+,F,t and 

S4o
+,F,t (cfr. Méndez [1987]). 

 
VII.1. Semantics 

A TO
+,F,t model is defined exactly as a To

+,F model but with the addition 
of the clauses 

(vii) (a≤b and aö t)⇒ böt 
(viii) aöt iff (∃x∈O) x≤a 

Eo
+,F,t models, Ro

+,F,t models, etc are similarly defined with respect to Eo
+,F 

models, Ro
+,F models, etc. 
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VII.2. Semantic consistency 
It is clear that in order to prove the semantic consistency of So

+,F,t we 
just have to prove that A13 is valid and that nec. preserves validity. We shall 
employ the following lemma: 
 

LEMMA VII.1 (a≤b and aöA) ⇒ böA. 
 

This lemma generalizes clause (i) of §2 to all wff and its proof is an 
easy induction on the length of A (use P2 and clauses (v), (vii)). 
 

LEMMA VII.2 A13 is valid. 
Proof. Let x∈O. By P1, x≤x. So, xöt, i.e., öS

o
+,F,tt. 

 
LEMMA VII.3 Nec. preserves validity 
Proof. Suppose (for reductio) öA and ût→A. Then, for some x∈O, 

y,z∈K we have Rxyz, yöt, zûA. As yöt, u≤y with u∈O. Now, A is valid, so 
uöA. By lemma VII.1, yöA. By d1, y≤z. Consequently, zöA which is 
impossible. 
 
VII.3. Completeness 

It is clear that in order to prove the completeness of So
+,F,t we just have 

to prove that the canonical clauses (vii) and (viii) hold. Clause (vii) is 
immediate by lemma VI.2 and clause (viii) is proved as follows: 

 
Proof.  
(a) Suppose x≤Ca (x∈OC). By Lemma VI.2 x⊆a. Then, obviously t∈a (x 

contains all theorems). 
(b) Suppose t∈a. We prove: if ðS

o
+,F,tA, then A∈a. Suppose ðS

o
+,F,tA. By 

nec., ðS
o

+,F,tt→A. So, A∈a (t∈a). Therefore, a∈OC. In consequence, ( ∃x∈OC) 
x⊆a. By Lemma VI.2, (∃x∈OC) x≤Ca. 
 
 

VIII. THE RELATIONSHIP BETWEEN t AND F 
 

The propositional constants are interpreted in standard relevance logics 
at least as strong as logic of relevance R as follows. The constant t represents 
the conjunction of all truths and the constant F the disjunctions of all 
falsehoods (see, e.g., Anderson and Belnap [1975]). The constant t is still the 
conjunction of all truths in the logics defined in this paper, but the constant F 
is the disjunction of all falsehoods (F→¬t) only in Io

+,F. In particular the 
following facts are proved. We have t and ¬F (A13 and T1, respectively), 
and t→¬F (by A1 and nec.) in all logics. But ¬F→t (A1 and the K rule) only 
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in S4o
+,F,t and in Io

+,F,t. On the other hand, F→¬t (A7) is a theorem of  Io
+,F,t 

(not of the other logics) but the converse ¬t→F is not (see the matrices 
below)2.  
 
 

IX. MATRICES 
 

Consider the following set of matrices: 
 

→ 0 1 2 3 
0 3 2 2 3 
1 3 3 3 3 
2 3 2 3 3 
3 0 2 2 3  

∧ 0 1 2 3 
0 0 1 2 0 
1 1 1 1 1 
2 2 1 2 2 
3 0 1 2 3  

∨ 0 1 2 3 
0 0 0 0 3 
1 0 1 2 3 
2 0 2 2 3 
3 3 3 3 3  

 
where t is assigned the only designated value 3, and F the value 0. The 
following facts are deduced from this set: 

a) Any logic satisfied by the set has the CAP. Let us consider any wff 
(A→B)→C. If →, t and F do not appear in C assign all the variables in C the 
value 1. Then v(C)=1 and, so, v((A→B)→C)=2. 
b) The set satisfies Io

+,F,t. 
c) F→(A→B) is not satisfied: assign A the value 0, and B the value 2. 
d) Consider now the same set with 3 as the only designated value and 3 
the value assigned to t as above, but 1 the value assigned now to F. Then, the 
formulas to follow are not satisfied: 

A→((A→F)→F) 
(A→(A→F))→(A→F) 
(A→(B→F))→(B→(A→F)) 
¬t→F 
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1 Theories have to be non-null to validate P9 and P10. Then, it is easy to prove 
(in S4o

+,F and IO
+,F): a is non-null iff a is regular. Then OC=KC. This reason explains 

that in S4o
+,F and Io

+,F it is more convenient to define validity with respect to K. We 
did not do so in §5 to keep the the treatment of these logics as general as possible. 

2 Clauses (v) and (vii) are introduced to preserve closure under the containtment 
relation (see Lemma VII.1). These clauses could be dispensed with adding the 
postulates 

P11. (a≤b and b≤c) ⇒ a≤c 
P12. (a≤b and a∉S) ⇒ b∉S 

Proof is left to the reader. 
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