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Bayesian Arguments for Weak Foundationalism 

Gerhard Schurz, Düsseldorf 

In this talk I give some simple arguments why there is an 
intrinsic need in Bayesian epistemology for a weak kind of 
foundationalism and for objective probabilities. My 
arguments are as follows: 

1. Arguments based on (Jeffrey) condition-
alization: 
In Bayesian conditionalization of the simplest kind, we 
have two logically independent propositions A, B, and a 
prior probability distribution Po over {±A∧±B} ("±" for 
"negated or unnegated") at a time to. The probabilities are 
completely determined by the values of the nodes of the 
corresponding Bayes net Po(B|A), Po(B|¬A), and Po(A). 
Already the orientation of the Bayes net indicates that we 
take "A" as epistemically prior to "B". But nothing in 
Bayesian epistemology makes this assumption explicit. At 
time t1, a new experience is made, with the result that the 
initial probability of A at t1, call it P1-in(A), is significantly 
greater than Po(A). Now, the probability P1-in(A) is 
incoherent with Po(B|A), Po(B|¬A), and Po(B). So the 
question is: how should one rationally change his or her 
probability values in order to make them coherent again. 
We denote the new coherent probability distribution by P1. 
Prima facie there are three possibilities: (i) change Po(B)! ; 
(ii) change Po(B|A) and/or P(B|¬A), and (iii) change P1-

in(A). 

1.1 Bayesian conditionalization requires epistemic 
priority of evidence: What one never does in Bayesian 
conditionalization is to reset P1-in (A) to P1(A) := Po(A). This 
would, for example, be the right kind of reaction if one is 
convinced of Po(B) to an extremely high degree, so that 
one concludes that the new experience leading to P1-in(A) 
was a wrongly interpreted or errorness experience. In 
Bayesian conditionalization, however, one takes the new 
initial probability value P1-in(A) for granted, i.e., one 
assumes P1-in(A) = P1(A). This shows that Bayesian 
conditionalization presupposes a distinction between what 
counts as evidence – A − and what counts as predictive 
(singular) hypothesis – B. The probability values of 
evidence statements are immediately given as inputs; the 
probability values of hypotheses are calculated from the 
probabilities of evidence statements. This is a weak kinds 
of foundationalism: it implies an epistemic priority, though 
not an infallibility, of evidence statements. 

1.2 Bayesian conditionalization requires objective and 
causally supported conditional probabilities: Even if we 
take it for granted that A counts as evidence, and hence 
set P1(A) := P1-in(A), then there are still two possibilities left: 
we may change the unconditional probability of B, or we 
may change the conditional probability of B given A 
(and/or B given ¬A). In Bayesian conditionalization one 
assumes that P0(B|A) = Po(B|A), and likewise for ¬A. In 
other words, the conditional probability of the prediction B 
given the evidence A is stable under new incoming 
evidence. But why should that hold? Note that p(B|A) is 
nothing but a quotient P(A∧B) / P(A) of two unconditional 
probabilities. Moreover, I will give some examples where 
the change of the conditional probability will indeed be the 
more appropriate reaction. I claim that the natural reason 
why P(B|A) is considered as stable as against new 

incoming evidence is the fact that P(B|A) is considered as 
an objective, statistically interpreted probability value of the 
corresponding event-types p(Bx|Ax). But even this is not 
enough. It can be shown that in the usually Bayesian 
update rule, where one sets 

P1(B) = P0(B|A) . P1(A) + P0(B|¬A).P1(¬A)   where 
P1(B|±A) := Po(B|±A) 

it follows that the inverse conditional probability values 
change their value (at least in most cases) − that is, it will 
indeed hold that P1(A|B) ≠  Po(A|Β)  (and likewise for ¬B). 
So why is P(B|A) considered as invariant, but not P(A|B)? I 
claim that it is implicitly assumed that the direction from A 
to B reflects a directed (direct or indirect) causal influence 
from A to B. Only conditional probabilities reflecting causal 
influence are treated as stable in Bayesian conditionaliza-
tion.  

2. Bayesian arguments for non-circularity  
Within the same framework of Bayesian conditionalization I 
will show that there cannot exist (completely) circular 
justification Circular justification means that, given some 
moderate probability value p(A), it is possible to justify B 
with help of A, leading to an increase of p(B), and then to 
justify A with help of the so justified B, leading to a further 
increase of p(A).  

Consider the following graph 

 A   B 

 

where the arrows mean high conditional probabilities. If 
p(A) increases, this will produce an increase of p(B) (given 
the conditional probability p(B|±A) is held fixed.) However, 
this increase of p(B) will not produce a further increase of 
p(A). This is a crucial difference to, for example, winner-
take-all networks. 

I will also show that Bayesian networks do allow for 
partially circular justification, which are displayed by the 
following graph: 
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It can be shown that given an increase of P(E1) and of 
P(E2), the increase of P(E1) will have an effect on P(B), 
and the increase of P(E2) will have an effect on P(A), 
which is only possible because of the circular probabilistic 
support between A and B. 
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3. Bayesian arguments against extreme 
coherentism  
Under extreme coherentism I understand the viewpoint 
that (i) the internal justification of belief set B ⊆ L (L the 
formal language) is a function of our probability distribution 
over B (and over L), and that (ii) this probability distribution 
is chosen by the requirement of maximal internal coher-
ence, where the internal coherence is a function of this 
probability distribution. Thus we choose our probability 
distribution for each B ⊆ L in a way that the internal coher-
ence of B becomes maximal. Then we choose that B* ⊆ L 
as our belief set which has highest coherence among all L-
subsets .  

If we map each atomic formula At into its negation and 
call this function f, we can construct for each probability 
function P an f-isomorphic probability distribution P¬ such 
that for each atomic formula At, P¬(At) = P(¬At). Moreover 
we get, for each belief set B, a corresponding belief set B¬. 
The unconditional and conditional P-probabilities over 
elements of B will have exactly the same values as the 
corresponding unconditional and conditional P¬-probabili-
ties over the corresponding (subformula-negated) ele-
ments of B¬. Therefore the P¬-coherence of B¬ will be the 
same as the P-coherence of B. This means that by the 
method of extreme coherentism, we can construct for each 
maximally coherent belief set B many other belief sets B' 
differing from B in that for some atomic statements they 
assert the exact denial, which are equally internally coher-
ent with respect to correspondingly modified probability 
functions. 


